
1

Logic programming I

• Facts
• Queries
• Rules
• Terms

Henrik Boström
Stockholm University

• Recursion
• Lists
• Negation

Logic programs

A logic program consists of facts and rules.g p g

A logic program is executed by responding to

queries.

Facts

A fact is a proposition that a certain relation

(predicate) holds between certain objects.

predicate_name(A1, ..., An).

father(abraham,isaac).

2

Database with some biblical
relations

f h (h b h) male(terach)father(terach,abraham).

father(terach,nachor).

father(terach,haran).

father(abraham,isaac).

father(haran,lot).

father(haran milcah)

male(terach).
male(abraham).
male(nachor).
male(haran).
male(isaac).
male(lot).

father(haran,milcah).

father(haran,yiscah).

mother(sarah,isaac).

female(sarah).
female(milcah).
female(yiscah).

Queries

A query is a request for an answer to whether or A query is a request for an answer to whether or

not a certain relation holds for certain objects.

?- father(abraham,isaac).

yes

?- father(abraham,lot).

no

A query for a certain program is answered by

looking for whether what is asked is a logical

consequence or not.

3

Variables

A i bl i ifi d bj tA variable is an unspecified object.

?- father(abraham,X).

X = isaac

Variables are written with an initial capital letter.Variables are written with an initial capital letter.

Constants are written with lower case letters only.

Existential queries

Variables in queries assume existential quantifiers.

?- father(abraham,X).

is interpreted as:

“Is there an X such that Abraham is father to X?”

A query may have more than one answer:

? father(haran X)?- father(haran,X).

X = lot;

X = milcah;

X = yiscah;

no

4

Conjunctive queries

A conjunctive query is written:

?- Q1, ..., Qn.

where each Qi is a simple (atomic) query.

?- father(abraham,isaac), male(lot).

yes

? h (X Y) l (Y)?- mother(X,Y), male(Y).

X = sarah Y = isaac

?- mother(X,Y), male(X).

no

Universal facts

Everyone likes pomegranates is written:Everyone likes pomegranates is written:

likes(X,pomegranates).

Everyone likes everyone is written :

likes(X,Y).

Everyone likes themselves is written :

likes(X,X).

5

Rules

A rule is written on the (Horn clause) form:A rule is written on the (Horn clause) form:

A :- B1, ..., Bn.

A is called the head

B1, ..., Bn is called the body

grandfather(X,Y):-

father(X,Z),

father(Z,Y).

Rules

grandparent(X,Y):- father(X,Z), father(Z,Y).

grandparent(X Y):- father(X Z) mother(Z Y)grandparent(X,Y): father(X,Z), mother(Z,Y).

grandparent(X,Y):- mother(X,Z), father(Z,Y).

grandparent(X,Y):- mother(X,Z), mother(Z,Y).

grandparent(X,Y):- parent(X,Z), parent(Z,Y).

parent(X,Y):- father(X,Y).

parent(X,Y):- mother(X,Y).

?- grandparent(terach,isaac).

6

Rules

brother(Brother,Sibling):-

t(P t B th)parent(Parent,Brother),

parent(Parent,Sibling),

male(Brother).

?- brother(lot,lot).

yes

brother(Brother,Sibling):-brother(Brother,Sibling):

parent(Parent,Brother),

parent(Parent,Sibling),

male(Brother),

Brother \== Sibling.

Terms
A term is either a variable, a constant, or a

compound term, where a compound term is on

the form: f(t1, ..., tn), where f is a constant and

t1, ..., tn are terms.

name(henrik)

s(s(0))

f(X Y)f(X,Y)

list(a,list(b,list(c,nil)))

A grounded term is a term that does not contain

variables.

7

Types

A type is a (finite or infinite) set of terms.A type is a (finite or infinite) set of terms.

A type may be defined by a unary relation:

female(sarah).
female(milcah).
female(yiscah).

Recursive logic programs may define infinite types.

Arithmetics
Natural numbers: 0, 1, 2, 3, ...

0, s(0), s(s(0)), s(s(s(0))), ...

natural_number(0).

natural_number(s(X)):- natural_number(X).

?- natural_number(s(s(s(0)))).

yesy

?- natural_number(N).

N = 0;

N = s(0);

N = s(s(0));
...

8

Arithmetic predicates

less or equal(0 X):- natural number(X)less_or_equal(0,X): natural_number(X).

less_or_equal(s(X),s(Y)):- less_or_equal(X,Y).

?- less_or_equal(s(s(0)),s(s(s(0)))).

plus(0,X,X):- natural_number(X).

plus(s(X),Y,s(Z)):- plus(X,Y,Z).

?- plus(s(s(0)),s(s(0)),S).

Lists
A list is either the empty list [] or a binary, compound A list is either the empty list [] or a binary, compound

term .(H,T) where H is an element and T is a list.

A list .(H,T) can preferably be written [H|T].

A list with the elements a, b and c may be written as:

.(a, .(b, .(c, [])))

[a|[b|[c|[]]]]

[a,b,c]

9

List predicates

first(X,[X|L]).

?- first(a,[a,b,c]).

yes

?- first(X,[d,e,f]).

X = d

last(X,[X]).

last(X,[Y|L]):- last(X,L).

?- last(c,[a,b,c]).

yes

More list predicates
member(X,[X|L]).

member(X,[Y|L]):- member(X,L).member(X,[Y|L]): member(X,L).

?- member(a,[a,b,c]).

yes

?- member(c,[a,b,c]).

yes

?- member(X,[a,b,c]).

X = a;

X = b;

X = c;

no

10

Even more list predicates

append([] Ys Ys)append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

?- append([a,b,c],[d,e,f],L).

L = [a,b,c,d,e,f]

?- append(L,[b,c,d],[a,b,c,d]).

L = [a]

member(X,L1):- append(L2,[X|L3],L1).

Defining recursive predicates
Task: define a predicate delete that holds forTask: define a predicate delete that holds for

triplets (E,L1,L2) where L2 is the list that is

obtained by removing all occurrences of E in L1.

?- delete(a,[a,b,b,a],L).

L = [b,b]

Three cases:

1. L1 = empty list

2. E = first element in L1.

3. E <> first element in L1.

11

Defining recursive predicates
Case 1:

delete(X,[],[]).

Case 2:

delete(X,[X|Xs],Ys):-

delete(X,Xs,Ys).

Case 3:

delete(X,[Y|Xs],[Y|Ys]):-

X\==Y,

delete(X,Xs,Ys).

Negation as failure
\+ G is considered to be true if G cannot be

proven to be true, otherwise \+ G is considered

to be falseto be false.

?- \+ member(a,[a,b,c]).

no

married(bill).

student(bill).

student(joe).

unmarried_student(X):-

\+ married(X),

student(X).

12

SICStus Prolog
SICStus 3.12.7 (x86-win32-nt-4): Fri Oct 6 00:15:14 WEST 2006

Licensed to dsv.su.se

| ?- [my_file]. % load my_file

{consulting my_file...}

{my_file consulted, 0 msec 320 bytes}

yes

| ?- father(X,Y). | (,)

X = abraham,

Y = isaac ?

| ?- halt. % quit

Tip: run through Emacs: C-x 2 M-x run-prolog

