Logic programming I

Henrik Boström
Stockholm University

- Facts
- Queries
- Rules
- Terms
- Recursion
- Lists
- Negation

Logic programs

A logic program consists of facts and rules. A logic program is executed by responding to queries.

Facts

A fact is a proposition that a certain relation
(predicate) holds between certain objects.
predicate_name(A_{1}, \ldots, A_{n}).
father(abraham,isaac).

Database with some biblical relations

father(terach, abraham)
father(terach,nachor).
father(terach,haran).
father(abraham, isaac).
father(haran,lot).
father(haran,milcah).
father(haran, yiscah).
mother(sarah, isaac).
male(terach). male(abraham). male(nachor). male(haran). male(isaac). male(lot).
female(sarah). female(milcah). female(yiscah).

Stockholm

 University
Queries

A query is a request for an answer to whether or not a certain relation holds for certain objects.
?- father(abraham,isaac).
yes
?- father(abraham,lot).
no
A query for a certain program is answered by looking for whether what is asked is a logical consequence or not.

Variables

A variable is an unspecified object.
?- father(abraham, X).
$X=$ isaac

Variables are written with an initial capital letter.
Constants are written with lower case letters only.

Existential queries

Variables in queries assume existential quantifiers.
?- father(abraham,X).
is interpreted as:
"Is there an X such that Abraham is father to X ?"

A query may have more than one answer:
?- father(haran, X).
X = lot;
X = milcah;
$X=y i s c a h ;$
no

Conjunctive queries

A conjunctive query is written:
?- Q_{1}, \ldots, Q_{n}.
where each Q_{i} is a simple (atomic) query.
?- father(abraham, isaac), male(lot).
yes
?- mother(X, Y), male(Y).
$X=\operatorname{sarah} Y=$ isaac
?- mother(X, Y), male(X).
no

Stockholm

Universal facts

Everyone likes pomegranates is written:
likes(X, pomegranates).

Everyone likes everyone is written :
likes(X,Y).

Everyone likes themselves is written :
likes(X,X).

Rules

A rule is written on the (Horn clause) form:
A :- B_{1}, \ldots, B_{n}.

A is called the head
B_{1}, \ldots, B_{n} is called the body
grandfather (X, Y) :-
father (X, Z),
father(Z, Y).

Rules

Stockholm

 Universitygrandparent (X, Y) :- father (X, Z), father (Z, Y).
grandparent (X, Y) :- father (X, Z), mother (Z, Y).
grandparent (X, Y) :- mother (X, Z), father (Z, Y).
grandparent(X,Y):- mother(X,Z), mother(Z,Y).
grandparent(X, Y):- parent $(X, Z), \operatorname{parent}(Z, Y)$.
parent (X, Y) :- father (X, Y).
parent(X, Y):- mother($\mathrm{X}, \mathrm{Y})$.
?- grandparent(terach,isaac).

Rules

```
brother(Brother,Sibling):-
    parent(Parent,Brother),
    parent(Parent,Sibling),
    male(Brother).
?- brother(lot,lot).
yes
brother(Brother,Sibling):-
    parent(Parent,Brother),
    parent(Parent,Sibling),
    male(Brother),
    Brother \== Sibling.
```


Terms

A term is either a variable, a constant, or a compound term, where a compound term is on the form: $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a constant and t_{1}, \ldots, t_{n} are terms.
name(henrik)
s(s(0))
$f(X, Y)$
list($a, \operatorname{list}(b, \operatorname{list}(c, n i l)))$

A grounded term is a term that does not contain variables.

Types

A type is a (finite or infinite) set of terms.
A type may be defined by a unary relation:
female(sarah).
female(milcah).
female(yiscah).

Recursive logic programs may define infinite types.

Arithmetics

Stockholm

 UniversityNatural numbers: $0,1,2,3, \ldots$
$0, \mathrm{~s}(0), \mathrm{s}(\mathrm{s}(0)), \mathrm{s}(\mathrm{s}(\mathrm{s}(0))), \ldots$
natural_number(0).
natural_number(s(X)):- natural_number(X).
?- natural_number(s(s(s(0)))).
yes
?- natural_number(N).
$\mathrm{N}=0$;
$\mathrm{N}=\mathrm{s}(0)$;
$\mathrm{N}=\mathrm{s}(\mathrm{s}(0))$;
...

Arithmetic predicates

```
less_or_equal( (0,X):- natural_number(X).
less_or_equal(s(X),s(Y)):- less_or_equal(X,Y).
?- less_or_equal(s(s(0)),s(s(s(0)))).
plus(0,X,X):- natural_number(X).
plus(s(X),Y,s(Z)):- plus(X,Y,Z).
?- plus(s(s(0)),s(s(0)),S).
```


Lists

A list is either the empty list [] or a binary, compound term. (H, T) where H is an element and T is a list.

A list. (H, T) can preferably be written [$\mathrm{H} \mid \mathrm{T}]$.
A list with the elements a, b and c may be written as:
.(a, .(b, .(c, [])))
[a|[b|[c|[]]]]
[a,b,c]

```
List predicates
```

```
first(X,[X|L]).
```

first(X,[X|L]).
?- first(a,[a,b,c]).
?- first(a,[a,b,c]).
yes
yes
?- first(X,[d,e,f]).
?- first(X,[d,e,f]).
X=d
X=d
last(X,[X]).
last(X,[X]).
last(X,[Y|L]):- last(X,L).
last(X,[Y|L]):- last(X,L).
?- last(c,[a,b,c]).
?- last(c,[a,b,c]).
yes

```
yes
```


More list predicates

Stockholm

 Universitymember (X,[X|L]).
member(X,[Y|L]):- member(X,L).
?- member(a,[a,b,c]).
yes
?- member(c,[a,b,c]).
yes
?- member (X,[a,b,c]).
$X=a ;$
$X=b ;$
X $=$ c;
no

Even more list predicates

```
append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).
?- append([a,b,c],[d,e,f],L).
L = [a,b,c,d,e,f]
?- append(L,[b,c,d],[a,b,c,d]).
L = [a]
```

member(X,L1):- append(L2,[X|L3],L1).

Stockholm

University

Defining recursive predicates

Task: define a predicate delete that holds for triplets ($E, L 1, L 2$) where $L 2$ is the list that is obtained by removing all occurrences of E in L1.
?- delete($a,[a, b, b, a], L)$.
$\mathrm{L}=[\mathrm{b}, \mathrm{b}]$

Three cases:

1. L1 = empty list
2. $E=$ first element in L1.
3. $\mathrm{E}<>$ first element in L1.

Defining recursive predicates

Case 1:

delete(X,[],[]).

Case 2:

delete(X,[X|Xs],Ys):delete($\mathrm{X}, \mathrm{Xs}, \mathrm{Ys}$).

Case 3:
delete($\mathrm{X},[\mathrm{Y} \mid \mathrm{Xs}],[\mathrm{Y} \mid \mathrm{Ys}]$):-

$$
X \backslash==Y \text {, }
$$

delete(X,Xs,Ys).

Negation as failure

$1+G$ is considered to be true if G cannot be proven to be true, otherwise $\backslash+G$ is considered to be false.
?- \+ member($a,[a, b, c])$.
no
married(bill).
student(bill).
student(joe).
unmarried_student(X):-
I+ married(X), student(X).

SI CStus Prolog

SICStus 3.12.7 (x86-win32-nt-4): Fri Oct 600:15:14 WEST 2006
Licensed to dsv.su.se
| ?- [my_file]. \% load my_file \{consulting my_file...\}
\{my_file consulted, 0 msec 320 bytes \}
yes
| ?- father(X,Y).
$X=$ abraham,
$Y=$ isaac ?
| ?- halt. \% quit

Tip: run through Emacs: C-x $2 \quad M-x$ run-prolog

